
Create procedural language extension for the Julia
programming language

Personal Details

Full Name Konstantina Skovola

Email konskov@gmail.com

GitHub https://github.com/konskov

LinkedIn www.linkedin.com/in/konstantina-skovola

Nationality Greek

Location and timezone Greece, GMT+2

Introduction

PostgreSQL allows developers more freedom to extend the provided capabilities in an
application-specific manner compared to other popular open-source Relational Databases. One
example of this is the ability to write user-defined functions in other languages besides SQL and
C.

Julia is still a new language but with a growing community and increasing popularity. Among its
strong points are the straightforward Python-like syntax, the high speed and of course, its
interoperability with other programming languages that is also leveraged by the Pl/julia
extension which makes use of Julia’s C API.

Of course, Julia is nowhere near as established as Python (for which the handler and Pl support
comes included in the standard releases of PostgreSQL). Still, as it becomes more widely
adopted, I think that adding a more functional pl/Julia to the list of pl handlers available to
developers will soon be seen as a useful contribution to the Postgres community.

In this project I will implement the tasks defined in the project description on the wiki, some of
which are also listed as open issues on GitHub, namely:

● Support triggers
● Support event triggers

mailto:konskov@gmail.com
https://github.com/konskov
http://www.linkedin.com/in/konstantina-skovola
https://wiki.postgresql.org/wiki/PL_Matrix

● Support inline code execution, a.k.a. DO statement
● Support input parameters as arrays
● Cache procedural language code instead of looking it up every time

Deliverables

Pljulia-1.0.sql will look like this:

CREATE FUNCTION pljulia_call_handler() RETURNS language_handler

LANGUAGE c AS 'MODULE_PATHNAME';

CREATE FUNCTION pljulia_inline_handler(internal) RETURNS void

STRICT LANGUAGE c AS 'MODULE_PATHNAME';

/* The following declaration is optional, depending on the time available

for implementing the validator */

CREATE FUNCTION pljulia_validator(oid) RETURNS void

STRICT LANGUAGE c as 'MODULE_PATHNAME';

CREATE LANGUAGE pljulia

HANDLER pljulia_call_handler

INLINE pljulia_inline_handler

/* The following line is optional. */

VALIDATOR pljulia_validator;

COMMENT ON LANGUAGE pljulia IS 'PL/Julia procedural language';

Currently, pl/julia has a pljulia_call_handler that supports regular function calls, but it is missing
a trigger_handler(), an event_trigger_handler(). An inline handler will also be added to allow the
execution of anonymous code blocks via the DO command.

Furthermore, it is good practice to add a validator to allow language-specific checking to be
done during CREATE FUNCTION. For this purpose, one more subgoal can be defined and
implemented if time allows it, so it is included in a separate section (Time permitting) in the
deliverables table.

Subgoal Deliverable

Trigger support A function static Datum
pljulia_trigger_handler(PG_FUNCTION_ARGS)
called by pljulia_call_handler when
CALLED_AS_TRIGGER(fcinfo)

Event trigger support A function static void
pljulia_event_trigger_handler(PG_FUNCTION_AR
GS) called by pljulia_call_handler when

CALLED_AS_EVENT_TRIGGER(fcinfo)

Inline code execution support A function pljulia_inline_handler

Support input parameters as arrays Type conversion functions

Cache procedural language code Structs pljulia_proc_desc that holds information for
each function and a lookup hash table
pljulia_hash_table for quick lookups. Pljulia_compile
will be modified to use them

Time permitting

Check correctness of Julia function
definition (before execution time)

A function pljulia_validator(oid)

Detailed project description and approximate timeline

The coding period is eleven weeks, which translates to approximately two weeks for each

subgoal. I expect that some will turn out to be simpler/trickier than others, some (i.e. triggers)

might be somewhat similar in implementation so the two week period assigned to each

deliverable is definitely not strict. This is an approximate schedule and likely to change

according to the mentors’ suggestions.

Post-application period (April 14 - May 16)

Continue studying source code and documentation in more detail to make sure I understand all

the internals and am ready to jump into coding
● Source code:

Procedural language extensions in the source code of Postgres (particularly plpython, plperl, pltcl)

Julia.h and jlapi.c (used for embedding Julia in C)

● Julia Documentation

Community bonding (May 17 - June 7)

Establish communication with mentors

Resolve any questions, discuss implementation details and make changes to the schedule and

deliverables if needed

Start writing type conversion functions

https://github.com/postgres/postgres/tree/master/src/pl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/jlapi.c
https://docs.julialang.org/en/v1/

Weeks 1 - 2 (June 7 - 20)

Handle argument and result types

Write functions to convert to/from julia/pg value representations1

Resolve github currently open issues concerning IN/OUT argument types 2

Add tests for new supported types

Weeks 3 - 4 (June 21 - July 4)

Create structs pljulia_proc_desc, pljulia_hash_table

Pljulia_proc_desc could have an entry for the function code and the parsed arguments (this is

done in the current version, I would just need to add them to the struct)

Modify pljulia_compile to lookup the function code first using the structs. If no hashtable entry is

found, then create a new hashtable entry for the function, compile the code and create a

pljulia_proc_desc for the newly-encountered function

Test performance with and without cached code

Weeks 5 - 6 (July 5 - 18)

Write pljulia_trigger_handler

This function will use pljulia_compile

Write and run tests

Mid-term Evaluation (July 12 - 16)
All tests for weeks 1-4 passing and making progress with the trigger handler

Assess whether there is enough time to add a validator function, considering the overall progress

Weeks 7 - 8 (July 19 - August 1)

2 Handle returning arrays of strings,
Handle returning boolean types from user defined functions,
Handle arrays passed as IN parameters

1 Will start with standard Julia data types such as numeric, strings, arrays, tuples and dictionaries. At least
numeric, character, text, boolean, composite, array pg types will be supported as input and output.
Currently, jl_value_t_to_datum is the function that handles the OUT types (converts from Julia to pg
representation) and it already covers many primitive types (except for boolean which is just one more if
case to add). Composite types, tuples and arrays are not covered so write cases to support these types.
As for IN types, the type and value of the input arguments is currently determined in pljulia_compile, but
no check is performed/action taken for non-primitive types (e.g. array types). Therefore write functions to
convert pg arrays etc to appropriate Julia representation.

https://github.com/pljulia/pljulia/issues/7
https://github.com/pljulia/pljulia/issues/6
https://github.com/pljulia/pljulia/issues/4

Write event trigger handler. This function will use pljulia_compile

Start writing pljulia_validator

Write test cases for the event trigger handler

Weeks 8 - 10 (August 2 - 15)

Write pljulia_inline_handler(PG_FUNCTION_ARGS)

This function will save the current execution/memory context, create a new context and call a

subroutine that will, in this new context, compile and execute the source code passed to it as an

argument

Finish pljulia_validator

Add tests

Final week (August 16 - 23)

Complete documentation, fix any remaining bugs

In view of the final evaluation, prepare a demonstration of the features added over the summer to

present to the mentors (For example, set up a database, write trigger, event trigger functions and

execute transactions that fire them. Display the results using pgAdmin. Execute DO and SELECT

statements to showcase the support of inline code blocks and several argument and return types)

Write a report to supplement the demo

About me

I am in the final year of my studies at the School of Electrical and Computer Engineering,
National Technical University of Athens. My majors are Computer Science and Computer
Systems and my minor is Computer Networks. I am currently working on my Masters thesis on
Knowledge Graphs for Sustainable Development.

I enjoy coding in C and working on backend tasks. My interests are primarily databases,
knowledge management, and operating systems.

I am confident I can deliver what I have mentioned above within the set timeframe.
● C is a language I have used extensively in my coursework, especially in projects for

Operating Systems and Embedded Systems
● Database Systems and Advanced Topics in Database Systems taught me much about

SQL and database setup/administration

● For my thesis I work mainly with Python scripts, but I have looked into Julia as a faster
alternative to Python, to deal with large datasets. So I already have an understanding of
Julia, and I will expand on that as needed.

It will be quite a distinction to become involved in Postgres development and start contributing to
Postgres and open-source databases. The time used for researching the codebase, mailing list
archives and contribution guides prior to my application has shown me that the code is
well-documented and the community welcomes new contributors.

During the coding period, I will adjust my working hours as necessary to make sure my progress
follows the schedule that we will set together with the mentors.

I had already planned to allot 40 hours per week to GSoC during the summer before finding out
that the scope of this year’s projects is roughly 20 hours of work per week. I also don’t have any
other engagements except for my thesis, which I’m flexible about, so I feel it is safe to say that I
can remain within the proposed timeline.

